
Practical Capacity Planning

Dave Wagoner
LexisNexis

david.wagoner@lexisnexis.com

“The plan is nothing, the planning is everything.”
- Dwight D. Eisenhower

The goal of capacity planning is to ensure that the right computing resources are available in the
right place in the computing environment and at the right time. Capacity planning efforts are cost-
justified in environments where significant revenue streams are generated by the use of software
applications and where capital expenditures on computing and network resources used to
operate software applications are substantial.

Capacity planning is in many situations performed based solely on resource consumption
projections. Instrumentation reflecting business activity and customer behavior can be integrated
to yield dramatically better planning than otherwise possible. Examples from a large UNIX
environment are provided.

Introduction
Computer based applications and services are
adopted initially because of the functionality they
provide; continued use depends largely on the
performance of those applications and services. This
applies in particular to web-based applications.
Performance, or at a minimum the perception of
performance, is therefore a priority in computing
environments. Performance is most often quantified in
terms of transaction response times and transaction
throughput rates.

One potential source of performance problems is a
shortage of computational or network resource
capacity. In such a situation, some resource (CPU,
DASD bandwidth, etc.) will have become saturated
and transaction response times will be affected as
queuing is incurred. Note that response times are
partitioned into service time, the time spent performing
a particular operation, and queue time, the time spent
waiting to gain access to the resource to perform that
particular operation. Queuing will occur when
transactions are arriving faster than the operation to
service those transactions can be performed (i.e.
service rate).

The terms capacity and performance are often used
interchangeably; such interchangeable usage is
somewhat imprecise as there are qualifiers of both of
these words that result in terms that warrant further
distinction. First, capacity planning is the art of
forecasting future resource demands and identifying
what capacity should be available, where it should be
positioned, and when it should be available. That is,
capacity planning is performed to ensure that the right
computing resources are available in the right place

and at the right time. The focus of capacity planning
is the future, based on what is known in the present
and what has been experienced in the past.

By contrast, capacity management has as its goal the
optimal use of existing resources to best meet existing
needs such that performance is not impacted due to
one or more computational resources being
exhausted or saturated causing queuing and elevated
response times. Such activities include the
redeployment of hardware from one area to another,
system tuning and the redistribution of data across
DASD devices to reduce device utilization and
consequently overall response times.

Performance analysis is the art of determining where
time is spent at the level of the individual transaction;
here the mantra is “find the bottleneck” which is
responsible for the greatest contribution to response
time. It is worthwhile to note that every system by
definition has at least one bottleneck that is preventing
transactions from being serviced infinitely fast in zero
time. The removal of one bottleneck means simply
that response times can be reduced and throughput
can be increased until the next bottleneck is
encountered.

If workloads remained constant and certain, capacity
management would be sufficient and capacity
planning would be unnecessary. However, there are
numerous instigators of capacity demand change.
These include:

�� long term usage growth and seasonal usage
patterns

�� changes in application transaction resource
consumption

mailto:david.wagoner@lexisnexis.com

�� technology updates, namely:
o infrastructure software upgrades
o hardware replacements

�� new versions of application software
�� workload migration from one platform to another
�� server consolidation
�� new projects and products

Metrics reflecting growth and seasonal usage patterns
can be collected, which make capacity changes that
can be attributed to this factor predictable, as
demonstrated below (see examples.) The capacity
impacts of technology updates, new versions of
software, and to a lesser degree, workload migration
from one platform to another, can be relatively well
understood and sedately addressed in capacity plans.

Changes in the resource consumption of application
transactions often represent a surprise. The addition
of features and functions, the addition of data,
“enhancements” to output, and very rarely non-optimal
code (a.k.a. bugs, design flaws, etc.) can cause
transaction resource consumption to increase. One of
the inherent duties of staff tasked with capacity
management and planning is the monitoring of
transaction resource consumption and making known
the opportunities for improvement to the pertinent staff
members. On rare occasions transaction resource
consumption decreases, affording more capacity for
other capacity demand drivers.

The most challenging area of capacity planning is
incorporating the demands of new projects and
products. There is often little known of the behavior of
these new demand drivers yet there is typically an
expectation of development and business staff that
resource consumption can be determined and
therefore capital can be apportioned prior to the
existence of application source code. This is done to
complete cost-benefit analyses and justify labor and
capital expenditures. The capacity planning challenge
of facilitating these new workloads is particularly
prominent with large organizations where numerous
disparate groups sponsor new projects and products
in a fashion almost seemingly coordinated to thwart
with unerring accuracy even the most exacting and
comprehensive capacity plans.

The creation of a single capacity plan is not sufficient.
Because of the number of independent instigators
inducing changes in capacity demands, contingency
capacity plans are no longer a luxury but are
necessitated, notably in large organizations where
capital expenditures are large but the budgets for
such expenditures strictly are upper-bounded.

Capacity planning is an ongoing process (figure 1).
Areas of concern are monitored to determine which
components of hardware, system software, or
application software warrant scrutiny; data is then
gathered to quantify conditions; analysis follows,

including trending of existing workloads as well as the
integration of expectations of demand changes from
other sources. Next, appropriate resources are
deployed if necessary, and monitoring is then
performed to examine the impact of changes.

Capacity Planning Cycle

Take Action

Monitoring Analysis

Data Gathering

Figure 1

The frequency with which new capacity plans are to
be created has a number of determinants. These
include:

- Capital budget cycle
- Seasonal workload patterns
- Software licensing cycle
- Hardware vendor discount cycles

The above items represent strategic motivators to the
timing of plans. In addition to these factors, acquisition
and deployment periods are tactical factors that
dictate how far in advance decisions are to be made
with regard to acquiring resources.

Essentials of Useful Capacity Planning
Capacity planning for computing environments is
commonly done by projecting future consumption of
resources (CPU, memory, I/O bandwidth, DASD
space, network bandwidth, etc.) based on prior
consumption during recent months. Minimally,
capacity planning is merely evaluating the current
resource consumption to determine if additional
resources are required now. For systems of low
priority with regard to revenue generation and capital
resource commitment, this may indeed be the level of
capacity planning that is appropriate. For customer
facing systems that are used to generate revenue or
require substantial capital commitment, a higher
degree of capacity planning is warranted. For such
systems the resource consumption data is important
but is only half of what is needed to produce a useful
capacity plan.

In using resource consumption data as the sole basis
for capacity planning, there is no integration of the
associated application activity (i.e. transactions) in the
derivation of capacity demand projections. The

material impact of application activity is what is
needed to produce a useful capacity plan. This data
can be manifest as instrumentation data emitted from
locally written applications, log files, or activity from
external application monitors. The idea is to correlate
overall resource consumption with application activity
to determine transaction costs (cost in this context
refers to the consumption of resources and not to a
financial cost). Once transaction costs are obtained,
business drivers such as annual growth, seasonal
trending, the acquisition of large blocks of new
customers, etc., can be used to more accurately
impact the future capacity demand projections. This
idea is paramount to performing useful, practical
capacity planning, as this makes it possible to
establish the ramifications of activities of seemingly
distant organizations such as sales and marketing
upon computing environment infrastructures. It is
worthy of emphasis that such capacity ramifications
can be anticipated well in advance of their
materialization.

Accumulation of transactional load data, optimally
over a period of years, allows seasonal transaction
loads as well as annual growth rates to be identified.
Seasonal patterns and growth rates are decomposed,
projected, summed, and then combined with
transaction costs. These results are integrated with
any relevant changes to market or application
structure to determine future capacity demands.

The correlation of customer activity and resource
consumption has been repeatedly applied for several
years at LexisNexis with great success, despite the
nature of the transactions being driven by a large,
uncoordinated, globally located (and therefore in
disparate time zones), web-based customer
population. In January of 1999, the peak hour of
activity for all of 1999 and its corresponding activity
level were predicted. The actual hour of peak activity
was exactly as predicted and the transaction level was
within 4% of what was predicted1.

There is a substantial secondary benefit to the
awareness of transaction costs. Tracking transaction
costs with high frequency makes evident the
ramifications of infrastructure or application changes.
That is, if changes to add new features and functions
to an application are made and transaction costs are
thereafter substantially elevated, the tracking of costs
yields evidence of performance tuning opportunities or
the need to revise capacity plans to account for the
subsequent increased demand. In this way, the
ongoing inspection of transaction costs provides a
potential indication of either performance tuning

opportunities or discrepancies that will need to be
addressed so that capacity plans conform to resource
demands2.

1 In 2000, due to the unprecedented irregularities with the
US Presidential election and the corresponding transaction
activity, the deviation between predicted transaction levels
and actual transaction levels increased to 15%.

Further, tracking transaction resource consumption
combined with capacity plans may expose
“breakpoints” where particular resources are not able
to scale and some architectural adjustment must be
made. An example is a server consolidation effort
where resources and workloads on a single system
image are increased. What is often overlooked is that
the network interface bandwidth is upper-bounded;
upgrading of the interface or the use of additional
interfaces via trunking3 may provide relief in such a
situation.

A common misconception is that capacity shortages
are the only source of poor application performance.
Low resource utilization does not necessarily equate
to optimal or even acceptable performance, as poor
performance can occur when no resource is at
saturation. An example of this is an application that is
performing I/O operations unnecessarily. The devices
that are facilitating the I/O operations may be quite
distant from saturation and have ample capacity
available; however, the fact that I/O is being
performed at all impacts transaction response time.

The time required to tune applications is frequently
overlooked. The actual tuning of the application itself
is not always the issue, as conflicting priorities with
software development and support organization cause
delays in focusing resources on tuning issues. New
products, features, and functions are often higher
priority than performance. Convincing these
organizations to dedicate resources to performance
tuning is at times nontrivial. Catastrophic performance
issues that directly affect revenue streams often
precipitate such tuning efforts.

Financial Motivation for Capacity Planning
Capacity planning is an investment; the currency of
such an investment is primarily staff time and effort.
The return from an investment in capacity planning
can easily be translated into monetary gains in both
near and distant futures.

 Staff time dedicated to capacity planning may appear
at first to be a luxury. Capacity planning duties

2 A somewhat subtle source for a transaction cost increase
without any code change is a limitation in the scalability of
the application. Such limitations often originate from thread
related activity. Scalability limitations of this nature are
detected as the ratio of System CPU time to User CPU time
increases.
3 “Trunking” is a method used to combine multiple
communication paths via software so that they appear as a
single network connection such that the resulting bandwidth
is higher for the combined connections than for an
individual connection.

typically fall to system administrators who are already
overburdened with periodic maintenance activities,
pursuing functionality and performance issues,
installation of new hardware and software, and even
database and application administration.
Compounding this is the estimation that the average
system administrator has less than two years of
experience. It is no wonder that capacity planning is
viewed as an afterthought amongst these other rather
prominent priorities.

In this context, it may at first appear to be difficult to
justify the dedication of substantial staff time to
capacity planning for a computing environment. The
reality is that where annual capital budgets are
substantial, an investment in capacity planning efforts
is easily justified.

First, capacity planning is necessary to protect the
revenue stream by ensuring that adequate capacity is
available for revenue generating activities. Shortages
in resources normally result in queuing of activity and
degraded response times. Internet customers are
typically tolerant of websites that are occasionally
unavailable, as this is seen as an intermittent and
correctable issue; these customers are far less
tolerant of websites that suffer slow response time.
(Outages of websites that are time sensitive, such as
eBay, are notable exceptions to this). It is no leap in
logic to anticipate that the departure of customers in
the short term due to poor performance will lead to the
loss of those customers (and corresponding revenue)
over the long term. Reputations of websites, like those
of people, are somewhat difficult to restore.

The second way in which dedicated staff time for
capacity planning is justified is somewhat subtle:
capacity planning is also performed to determine
when it is appropriate to defer purchases to conserve
financial resources. Recall that the goal of capacity
planning is to ensure that adequate resources are
present in the right amounts in the right place and at
the right time; that is, not too late but also not too
early.

There are three immediate ways in which the
deference of acquisitions is important. First, the
price/performance ratio of hardware is typically
decreasing over time (Moore’s law). Deferring a
purchase therefore means that acquisitions costs will
be reduced for a fixed amount of hardware.
Alternatively, deferring a purchase also means that
the same acquisition funding will purchase more
resources.

Second, deferring purchases until absolutely
necessary provides application support organizations
time to tune applications. If applications can be tuned,
fewer computational resources will be needed to
support those applications. A purchase prior to a
tuning effort may result in surplus (depreciating)

hardware that is not contributing to the revenue
stream. This should not be underrated; application
tuning can reduce resource consumption by orders of
magnitude – for large configurations the saving can be
quite staggering.

A cautionary note is appropriate here regarding the
timing of purchases – purchasing schedules must
incorporate acquisition, deployment, and integration
time for new hardware resources to ensure that
resources are available when they are needed.
Deployment and integration times for new resources
can easily exceed acquisition times at large sites that
have disciplined and rigorous change control
processes.

Third, deferring purchases has a financial impact on
the time value of money, an impact familiar to
accountants. If a loan is needed to acquire the
resources, interest costs are incurred. If a loan is not
needed but corporate resources are dedicated, those
resources cannot be earning interest or dedicated to
other business needs.

One or two success a year in protecting revenue
streams or by realizing substantial cost savings by the
deferring of a hardware/software purchase can easily
have an impact on the corporate bottom line sufficient
to justify staff time. As an example, just three of the
activities of capacity planners for the UNIX
environment at LexisNexis during the first half of 2001
have yielded return in excess of twice their annual
staffing costs of slightly under $1 million. First,
capacity planning was performed for a back-office
decision support system. The organization using and
funding the systems was advised that an investment
of $2 million was necessary. However, a capacity plan
was completed that showed that this was not the case
and indeed any purchase in this area was
unnecessary.

Further, there were two distinct occasions where
revenues were seriously threatened by software
issues discovered during capacity planning
processes; these issues would not have been
otherwise noticed until the revenue losses
materialized. A single day of revenue far exceeds the
annual staffing cost for the capacity planners in the
UNIX environment.

One strategy to avoid capacity planning is to purchase
and stockpile resources well in advance of their
potential need. For the three reasons outlined above,
diminishing hardware costs, the impact of tuning
efforts, and the time value of money, this strategy
does not derive maximum benefit from acquired
resources. This is in effect an “insurance policy
approach” to capacitating a computing environment,
and may indeed work in small computing
environments with modest capital budgets. However,
successful computing environments and their capital

budgets rarely stay small, and the consequences of
purchasing substantial resources too far in advance of
when the resources are needed exceeds the cost of
the staff time to perform capacity planning sufficient to
avoid such purchases.

Determining Staffing Requirements
Large consulting firms are fond of using the number of
computer systems in an environment as a guideline to
determine staffing requirements for administration of
those systems. The reality is that there is substantial
variance in the level of effort required to maintain
systems within an environment. There are typically
systems in an environment that run with minimal
administrative requirements for months whilst other
systems demand considerable attention. That is, the
“80-20 Rule” applies: approximately 80% of the staff
time is concentrated on approximately 20% of the
systems in the environment. Any validity to the
guidelines used by large consulting firms regarding
staffing levels is due to the proportions being similar
across different environments rather than solely on
the number of systems.

There is a temptation to similarly estimate staff time
necessary for capacity planning as a function of the
number of computer systems in an environment. The
80-20 Rule and the number of systems can be applied
here, but perhaps more telling metrics are the periodic
capital budget for expenditures on computing
resources and the anticipated periodic revenues.
Since capacity planning is focused on the future,
using the current number of systems is perhaps a
distorted staff level estimator. Further, since the two
principle areas in which capacity planning can benefit
an organization are by protecting the revenue stream
and by reducing resource acquisition costs, it would
seem appropriate to establish the level of effort
dedicated to capacity planning as a function of these
quantities.

L
O
W

H
i
g
h

L
I
N
E
A
R

A
N
A
L
Y
S
I
S

M
O
D
E
L
S

S
I

M
U
L
A
T
I
O
N

B
E
N
C
H

M
A
R
K
S

COST

R
u
l
e
s

o
f

T
h
u
m
b

Figure 2 - The Capacity Planning Analysis Cost Continuum

Another determinant in the staff resources required for
capacity planning is the depth of detail with which the
analysis portion of the capacity planning cycle is

performed. This is reflected in figure 2 (derived
directly from work done by Leroy Bronner circa 1982.)

“Cost” in this context reflects the level of resources,
both in staff hours and supporting hardware and
software, translated into a monetary value. Rules of
Thumb (ROTs) are useful in determining high-level
approximations. Examples such as “10% of the
activity on any given day occurs during peak hour”
and “0.5% of the activity in any given month will occur
during the peak hour for the month” enable capacity
planners to quickly determine if a proposed product’s
activity will have a substantial impact on existing
resources.

On the high-cost end of the continuum is the use of
benchmarks or “load tests.” A remark concerning
benchmarks is appropriate here: the only truly
relevant benchmark is the running of one’s own
application. Using SPEC, TPC-x, dhrystone, and a
host of vendor benchmarks are useful to obtain a
general sense of what may happen under a limited set
of conditions, but to truly capture what will happen for
a specific application, the application itself must be
run and it must be done so in conditions that would
exist when the application is actually used4.

Benchmarks can (and are) run on systems used in
production (i.e. used to service customer activity),
typically during off peak hours. Ideally a parallel
environment is used to not interfere with customer
activity, but duplicating the production environment
and maintaining it can be costly. A scaled-down
version of a production environment is of some value,
but typically bottlenecks are discovered in the actual
production environment because the benchmarking
environment is not sufficiently capacitated to expose
these benchmarks5.

There exists a substantial staff dedicated to capacity
planning and performance analysis at LexisNexis. A
pattern has been established that there is slightly less
than one capacity planner dedicated to the UNIX
environment for every $1 million of the UNIX
environment capital budget6 (this number may be
different for OS390 and Win2K environments.) Duties

4 In addition to running the actual application in production
environment conditions, the application must be run using
data and transactions that would actually occur in use.
Capturing customer activity for “replaying” during a
benchmark is ideal but non-trivial.
5 Applications running on systems in a load test
environment that are smaller than those in a production
environment are not always able to generate the transaction
rate, and consequently the I/O load, the network traffic, and
memory and buffer space consumption as observed in
production.
6 Revenue streams are not made public in the case of
LexisNexis and therefore can not be used for the purposes
of describing staffing efforts.

of this staff are primarily capacity
planning, performance analysis,
maintaining vast volumes of
application instrumentation to
support planning efforts, and
special studies in capacity and
performance areas.

Capacity Planning Examples
A number of examples of
capacity planning excerpts
follow. They are not entire
examples of “capacity plans,” but
rather key excerpts that present
noteworthy aspects of capacity
planning. In reading the
examples, two key points must
be noted. First, the time period of
focus is the peak hour of activity
on a daily basis, in terms of
transactions7. It is this hour for
which capacity should be
available, rather than average,
median, or some other hour of
activity8. Using this increment of
time is sufficient in these examples, but may not be
appropriate for capacity planning in all environments.

What constitutes success in capacity planning may
not be the same in every situation. In these examples,
maintaining CPU utilization below designated
thresholds during peak hours of activity to minimize
queuing is the objective. Memory, I/O bandwidth, or
network bandwidth could also be resources for which
planning is performed; it so happens that for the OLTP
applications in the examples below that CPU
resources are exhausted prior to any of the other
resources. Other plans, such as those for decision
support systems, may have success defined as
limiting the number of hours that systems are utilized
above a particular threshold or some other relevant
criterion.

Second, the majority of examples relate to Sun
Microsystems servers. Capacity ratings for these
servers are expressed in terms of “M-values” or “M-
quanta.” This is based on the work of Bill Walker of
Sun Microsystems9. M-values are the best

measurement of aggregate system capacity known to
date. This measurement incorporates not only the
number of CPUs and clock speed of the CPUs, but
also the system type (to incorporate backplane
impacts such as memory latency), operating system
version, and L2 cache sizes.

7 The peak hour of transactions does not always mean the
peak hour of resource consumption. For applications run at
LexisNexis and shown in these examples, the peak hour of
transactions and resource consumption do indeed match.
8 Dynamic Reconfiguration capabilities to dynamically add
and remove resources are available with some platforms; at
this point in time there are still issues with such technology,
but this could eventually alter this practice.
9 The concept on which Bill Walker’s work is based
originated from Joe Major’s work on mainframe systems in
this area.

Example 1
The first two examples show customer activity in
terms of transactions that materialized compared to
what was planned. Note that the customers
generating the traffic are web-based, have “bursty”
(Erlangian) arrival rates, and constitute a large
population that is geographically dispersed and
therefore in differing time zones.

In graph 1, peak hours of activity for a set of combined
products during each week are plotted against a
“plan”, where the plan is an integration of a projection
of transaction activity based on prior years of data and
what is anticipated regarding changes in business
activity. Activity from prior years is decomposed into a
seasonal pattern and a growth pattern. Extrapolations
on each of these components are made and the
results recombined and then integrated with
anticipated impacts resulting from business changes
to produce the plan as seen in the graph.

Deviations from the plan warrant scrutiny. In this
example, transactions are slightly higher in January
than planned – quite possibly in the aftermath of the
unprecedented activity associated with the 2000 U.S.
Presidential election. Activity in May decreases as
expected, but not as much as expected for the
seasonal pattern. A review of what changes in the
marketplace and in products, as well as an evaluation

of the likelihood of their recurrence, will provide the
feedback needed to refine future revisions of the plan.
Continuous improvement is an underlying theme in
capacity planning activities.

Example 2
Resource consumption is associated with the
transactions in example 1. For this particular set of
applications, CPU consumption warrants the most
attention from capacity planners. Actual CPU
consumption is plotted against the planned
consumption in graph 2.

Points are plotted by day rather than week in this
graph. Deviations worthy of scrutiny occurred in mid-
February and in early June. Two features of this
graph warrant comment. First, the uppermost capacity
line represents 100% CPU utilization; it is not possible
to consume more than this level. Somewhat below
this is what is referred to as the “engineering level” of
capacity. An objective is to avoid exceeding the
engineering level for sustained periods.

The difference between 100% utilization and the
engineering level is driven by two characteristics.
First, there is a utilization upper-bound (UB) which an
individual system should not exceed. When a system
exceeds this threshold, queuing ensues and
transaction times increase. The utilization upper-
bound can be thought of as a service level objective.
The second contributor to the engineering limit is
referred to as the failover capacity limit. This is the
limit above which capacity should not be exceeded so
that should there be a failure of one system among all
systems concurrently offering a particular service, the
surviving systems will be able to absorb the full
workload of the surviving host and still operate below
UB.

For example, assume two
systems are operating in tandem
(“active-active” configuration) to
provide a service and are
configured such that if one fails
the other absorbs the load. If the
upper-bound capacity limit for an
individual system is 90%
utilization, then the engineering
limit for the composite set of
coordinated systems is 90%/2 =
45%.

This percentage can be
calculated for N similarly
configured systems with upper-
bound capacity for individual
systems UB by the equation:

UB x (N -1)
NEngineering Limit =

For Sun Microsystems servers, UB is typically
between 85% and 90% CPU utilization. Note that this
is for a peak hour of activity and represents an
average utilization for that hour. Experience at
LexisNexis has shown that response times for
applications can double if UB is consistently
exceeded, even though CPU utilization remains below
100%.

Example 3
Achieving high accuracy in planning for peak hour
transactions in a dynamic business environment can
be challenging, as demands are driven by more than
just seasonal patterns and growth. A common
situation is that a small number of products contribute
the most impact on overall capacity and the relative
load associated with all other products is
comparatively inconsequential (80-20 Rule).
Therefore, focusing planning efforts on dominant
products will likely yield the greatest accuracy for the
overall plan.

Graph 3 shows actual transaction levels during peak
hour of each week compared to plan levels for one of
the major products in the example environment. Prior
graphs used primarily a resolution of months along the
X-axis for plan levels; with sufficient data, this
resolution can be improved to weeks with great effect.
Recall that the customer population is large, web-
based, and geographically distributed, so this degree
of accuracy is impressive.
Example 4
Three tiered architectures are popular in environments
hosting web products. The three tiers in the
architecture are web-servers, application servers, and
database servers. The prior examples focused on

application servers. Graph 4 shows the CPU resource
consumption on a database server for a product.

There are numerous points worth mentioning in this
example. First, the CPU resource consumption plan is
derived by determining the amount of CPU consumed
on a database system for customer transactions that
arrive at the application server (i.e. “cost” or “work” per
transaction), and then multiplying this by the peak
hour number of transactions for each week.

Determining the cost can be
accomplished via regression analysis
if the nature of the activity performed
by the database server in response
to the transactions is distinguishable
and diverse. If the various database
activities for transactions are
approximately uniform with respect to
CPU consumption, then it is sufficient
to compute the “cost per transaction”
by dividing the CPU consumed by the
number of transactions for a large
number of time intervals (preferably
during peak and near peak hours) on
the database system and performing
a univariate statistical analysis.
Median values worked well in this
example as opposed to averages,
which were generally higher due to
outliers10. Note that this assumes an
approximately constant cost per
transaction as activity levels
increase. This is likely to not be true
in general as workloads increase and
scalability limitations are discovered.

This plan was derived in February and early March of
2001. The plan shows that the available CPU
resources are not only insufficient to provide failover
capacity early in the year, but during the first week in
September the upper-bound capacity for an individual
system will be exceeded without the addition of
hardware resources or application tuning. These
findings were sufficient to inspire the latter approach.

These conversations began in late
February when actual CPU
consumption was approximately at
the failover capacity limit.

Actual CPU utilization tracks well
with plan until mid-March, when a
major revision to the software
running on the application server
was made. The impact on the
database server was dramatic, as
CPU consumption was not only
above the failover capacity of 45%,
but it exceeded the upper-bound
capacity limit of 90%. Transaction
response times during this period
were notably longer.

The CPU consumption dropped to
zero one day in early March. This
was the result of a system failure
where this workload had been

10 A conservative plan should also be derived using perhaps
90th percentile cost per search values and a risk assessment
made as to which plan should apply.

accommodated elsewhere as the product continued to
operate.

To aid developers in tracking the impact of their
application tuning efforts on the database system,
daily tracking of the cost per transaction was charted.
Graph 5 shows an increase in the cost per transaction
as a result of the mid-March software changes.
Tuning efforts brought the cost down, but suspicion
was raised as the system to user CPU ratio
dramatically increased. A high system to user CPU
ratio is an early warning indicator of potential
scalability limitations. As a result, this metric was
added to the daily chart for tracking purposes.

Relevant Digressions
There are a number of slightly digressional capacity
planning topics that warrant at least brief mention.
Insufficient attention to these points is guaranteed to
condemn even exceptional capacity planning efforts to
an abrupt and fiery ruination.

The first of these is the need for at least rudimentary
social skills of those performing capacity planning
whilst they operate in a professional setting.
Conveying data and conducting subsequent
discussion plans and their justification requires
substantial communication in small groups and in
public forums. If an inappropriate style (a.k.a. “career
limiting feature”) overshadows the content of the
communication, then the entire effort of capacity
planning has been wasted save for a memorable and
possibly entertaining calamity. Human nature is such
that the message is not easily disassociated with the

messenger, and an ungraceful
performance is certain to detract
from the credibility of content.

Phrased another way, a degree
of tact is necessary. This is truer
in the area of capacity planning
than in perhaps other support
areas due to the influence
capacity plans can have on
capital resources as there is
unfailingly some form of
competition for these resources.
Agendas of various competing
parties may be contradictory
and capacity plans may be used
as fodder to support one
position over another. There is a
relevant quote regarding tact:
“Tact is the art of making a point
without making an enemy.”
(Isaac Newton). There are few
supporting roles in which this is
truer.

Capacity planning attempts to
prepare for the future by

anticipating events well before they occur.
Professionals in another notable area in which this is
attempted, namely weather prediction professions,
suffer derision whenever their predictions are even
mildly erroneous and are taken for granted when they
are correct. However, these professions are generally
afforded the luxury of not suffering any direct impact
for forecasting conditions that did not materialize. This
is not so for capacity planners; they enjoy the full
benefit of the gratification presented to them by the
organizations they serve whenever plans deviate from
reality.

One solution to this dilemma is to ensure that capacity
plans that are produced are indeed plans and not
forecasts. This distinction is that forecasts are a
prediction of what will happen and may be judged
more or less accurate; a plan is an agreement
amongst all participating parties to prepare for a
particular set of conditions in the face of uncertainty.
Parties other than those directly responsible for
capacity planning, such as business or other support
organizations that will in some way have a
dependence on the resulting capacity plan, are
engaged to provide higher quality data than otherwise
likely to occur. Essentially, their assistance is enlisted
to clarify and lend scrutiny to assumptions, business
expectations, and data.

If the conditions that actually materialize differ from
those expected by the agreed plan, then an
investigation as to why the plan differed from reality
should be pursued so that subsequent plans or even

the planning process can be improved11. The principle
here is that by engaging parties who will be affected
by capacity plans being produced, the quality of those
capacity plans is assured to be higher than otherwise
possible as they will have an active role and share in
the rewards.

As more organizations become involved in the
process of developing capacity plans, it will become
evident to capacity planners that capacity and
performance are but two among several factors that
ultimately are used to make decisions regarding
resources to be purchased. Other critical factors
include datacenter floor space, the number of systems
being managed by system administration
organizations, flexibility of available architectures,
software compatibility, and corporate platform
strategies to lower overall operating costs. For
example, it is entirely possible that a platform that is
technologically inferior to others available is selected
to best meet the overall computing requirements. In
situations where decisions are being made to the
contrary of their advice, capacity planners are best
served by ensuring that the arguments they have
forwarded have been understood.

Summary
What has been described here is a view of capacity
planning that is of practical, rather than strictly
theoretical, use. Many organizations only use
resource consumption data to produce capacity plans
if they indeed produce capacity plans at all. The
benefit of merging resource consumption data with
customer transaction data would appear to be
intuitive, yet this is rarely done. The suitability of the
resulting capacity plans is generally far better than
otherwise possible.

It must be recognized that capacity planning is
concerned with the placement of the right computing
resources in the right place and at the right time. The
deployments of resources too late will likely result in
poor application performance, discourage customer
transactions, and eventually impacting corporate
revenues. The deployment of resources too early
affects capital budgets such that operating costs are
higher than necessary. Capacity planners do indeed
walk a tight rope. In computing environments where
revenue streams and capital budgets are substantial,
the investment of staff time to providing capacity plans
easily yields a significant return.

11 In cultures requiring a scapegoat, blame is shared
amongst the participants when plans and reality differ. This
type of culture is highly undesirable because participants
may be reluctant to share useful data in the future if they are
faulted and chastised. If conditions that were expected in
the plan do indeed arise, then competition for the credit will
of course ensue.

Acknowledgements
Recognition is in order for Dave Heald and Jim Aldrich
of LexisNexis, as they (patiently and repeatedly)
conveyed many of the ideas summarized here until
they were adequately understood. George Dodson of
candle.com endured editing duties and tolerated many
questions. Thanks to Dave Heald for recreating and
updating the figures based on hardcopy material.
Recognition is also in order for Bill Cooke, my
immediate supervisor at LexisNexis, who
commissioned this work and supplied ample
encouragement, only to be forced to endure the
review of its drafts; no good deed goes unpunished.
Many valuable comments came from those at
LexisNexis that have reviewed the document; in
particular Mike Natale, Dave Heald, and Jim Aldrich.

Bibliography
[1] Raj Jain, The Art of Computer Systems
Performance Analysis, John Wiley and Sons, 1991,
ISBN 0-471-50336-3.

[2] Daniel Menasce’ and Virgilio Almeida, Capacity
Planning for Web Performance, Prentice Hall, Upper
Saddle River, NJ, 1998, ISBN 0-13-693822-1

[3] Daniel Menasce’ and Virgilio Almeida, Scaling for
E-Business, Prentice Hall, Upper Saddle River, NJ,
2000, ISBN 0-13-086328-9

[4] George I. Thompson, “Six Levels of Sophistication
for Capacity Management”, CMG 2000 Proceedings

	Introduction
	If workloads remained constant and certain, capacity management would be sufficient and capacity planning would be unnecessary. However, there are numerous instigators of capacity demand change. These include:
	Essentials of Useful Capacity Planning
	Financial Motivation for Capacity Planning
	
	Determining Staffing Requirements
	Capacity Planning Examples
	Example 1

	Example 4
	Three tiered architectures are popular in environments hosting web products. The three tiers in the architecture are web-servers, application servers, and database servers. The prior examples focused on application servers. Graph 4 shows the CPU resource
	To aid developers in tracking the impact of their application tuning efforts on the database system, daily tracking of the cost per transaction was charted. Graph 5 shows an increase in the cost per transaction as a result of the mid-March software chang
	Relevant Digressions
	Summary
	Acknowledgements

