
Bertha: A Benchmark Tool for High-Performance Storage Subsystems

Dave Wagoner
wagdalule@hotmail.com

The popular circa 1990 UNIX file system benchmark tool “Bonnie” has been substantially
modified to form a distinct benchmark tool called “Bertha”. The features of Bertha that
distinguish it from Bonnie, as well as most other benchmark tools, are 1) it generates
substantially more I/O to challenge contemporary storage subsystems so that their
capabilities can be better measured, 2) it offers a unique facility to “replay” I/O
“transactions” that have been captured from actual production applications or simulations
to more accurately suggest performance that will be experienced when using particular
applications, and 3) extensive metrics reporting that provides more insight than what a
single average value can provide.

The Bonnie benchmark tool, authored by Tim Bray,
was a popular tool used in the 1990s to measure
UNIX file system performance. The load generated by
Bonnie stressed operating systems and storage
subsystems from the perspective of an application,
thus its measurements were afflicted with the
distortions caused by various caches. For a sufficiently
large load, the cache could be over-ridden and the
impact of the cache minimized, but not completely
negated.

At the time Bonnie was written, a single CPU in most
system configurations was generally sufficient to
generate enough I/O load to saturate a disk
subsystem. By the late 1990s, this was no longer the
case – running Bonnie could consume an entire CPU
without reaching the maximum throughput of a disk
subsystem. Under these conditions, the results from a
benchmark would be the same regardless of the
storage subsystem configuration as long as it met the
minimum workload threshold to saturate a CPU.
Identifying the impact of tuning changes, comparing
storage products, and stress-testing systems could no
longer reasonably be done with Bonnie.

What made Bonnie attractive was that it was an
elegant tool written in a few hundred lines of code that
was easily deciphered and modified. With a few
modifications, the core Bonnie code was modified to
generate substantially more load. The methodology for
doing this is to spawn a set of processes to generate
I/O operations (IOPs) concurrently in a coordinated
fashion. Thus, rather than a single thread of execution
generating sequential IOPS, an arbitrary number of
processes can be made to generate many times more
IOPs to saturate file systems and storage subsystems
and measure their true upper-bound performance.

In considering benchmarks, the conventional wisdom
is that the only benchmark that matters is one’s own
application. With this in mind while enhancing Bonnie,
it became evident that a facility to play back or “replay”
captured IOPs from actual production applications
could be implemented with relative ease. In addition to
replaying application transactions, simulations for
“what-if” types of analysis could also be facilitated.
The content of the IOPs from the actual application
are not replayed. The replayed “transactions” preserve
the I/O access pattern, the specific transaction (read
or write, operations), and the data volume. Buffers for
write operations were altered (“dirtied”) before each
write operation so as to attempt to thwart I/O
avoidance mechanisms.

The original Bonnie benchmark tool ran six basic tests:
write, read, rewrite, character-based read, character-
base write, and random. The write test created a
scratch (I/O test) file; the read test simply reads the
data from the scratch file created during the write test.
The re-write test consisted of reading a buffer of I/O
from the file, moving back to the beginning of where
the read data started (i.e. seek back to the beginning
of the data just read), then re-writing the data, moving
to the next sequential data and repeating until the
entire file has been re-written. The character-based
read, character-based write, and random tests focused
more on file system performance than on storage
subsystem performance. Because memory has
become cheaper and more plentiful than it was in the
1990s, these particular tests have perhaps diminishing
value as caching dramatically aids in I/O avoidance.
Reported throughput rates for these tests became
unrealistically high and it was obvious that I/O was in
most cases not truly being performed. These tests
were consequently removed, leaving write, read, and
rewrite (and replay) tests in the Bertha implementation.

mailto:wagdalule@hotmail.com

Reconsideration may be in order if evidence emerges
that the removed tests can be effectively used to
measure performance of storage subsystems and not
just cache performance.

The two enhancements of the capability of increasing
I/O load and the capability of performing I/O
transaction playback (a.k.a. replay), particularly the
former, were used for a number of years in limited
settings in the late 1990s and early 2000s by the
author and co-workers. The reported metrics were still
averages of IOP throughput as reported by Bonnie – a
single number to describe the throughput of each test.
Averages can often lead to a distorted view of results,
particularly when outliers are substantial.

Further, the enhancement of using multiple concurrent
processes to generate I/O greatly magnifies the
unsuitability of a single average value to characterize
performance. Although processes that are assigned to
do a fixed amount of I/O can be synchronized at the
start of a test, the processes do not terminate at the
same time; some processes continue to generate I/O
whilst others have long since completed. Depending
on the parameters selected for a particular benchmark,
the time during which some number less than the
command line-specified number of processes are
running, particularly near the end of the test, to
generate I/O could be substantial.

Note that a distinction is being made here between
“benchmarks” and “benchmark tools.” Despite the
popular use of the terms, Bonnie and Bertha should be
referenced as “benchmark tools” that perform some
user specified test. A benchmark would consist of the
benchmark tool and a specific set of supplied
parameters, such as the number of concurrent
processes to run, the I/O size for each operation, and
the size of the scratch files on which the IOPs are to
be performed.

To address the issue of having a perhaps nebulous
single number to describe the outcome of a test, a
scheme was devised to record the timestamp of
initiation and response time of every I/O transaction
performed by Bertha. This enables a much more
detailed view of what occurred during a test to be
provided, yielding insights into storage subsystem
behavior and exposing characteristics of particular
benchmarks warranting attention. Effects of storage
subsystem cache, for example, become clearly evident
as bursts of IOPs are performed at the beginning of a
write test, followed by long periods of inactivity,
followed again by a burst of IOPs in a repeating
pattern. It is worth noting that Bertha is reporting
response times that are perceived by applications;
what may be occurring at the operating system level
may be somewhat different. However, users are

generally most interested in performance at the
application level. Performance at lower levels
(operating systems, storage subsystems) is perhaps of
academic interest, but secondary to what is
experienced by applications.

Having this level of detail allows a wealth of various
reports of interest to be generated. In particular, a
timeline can be constructed, showing IOP volumes
and IOP concurrency levels (the number of IOPs being
performed at any given time). Histograms of response
times, data throughputs, and IOP concurrency levels
are also generated. Summary statistics showing
median, minimum, maximum, and various percentile
response times are generated to provide a high level
description of the results. Last, the availability of this
level of detail allows response time vs. throughput and
response time vs. IOP concurrency level summaries to
be derived. Obviously, other types of reports can be
generated; the ones listed here were the ones that
initially appeared useful.

In addition to being a tool for measuring performance,
another use for Bertha is testing of the resiliency of
configurations during the failure of selected
components. For example, measuring the impact of
the removal of one of two fiber cables that are carrying
load-balanced IOPs can be easily facilitated. The time
of the cable pull can be easily matched with the
timeline reports generated from the test to determine if
an impact on performance, a stall in activity, or some
other effect resulted.

Throughput Testing
As mentioned earlier, Bertha will measure throughput
for three basic operations: write, read, and rewrite.
IOPs for each of these tests are performed by a set of
fork(2)ed processes that start operating at
approximately1 the same time. The number of these
concurrent processes is specified on the command
line when Bertha is invoked.

Each test is performed to completion before the next
starts. All processes performing a particular test (write,
read, or rewrite) must be completed and I/O activity
quiesced before the next test begins. A sync(2) is
executed between each step, and a delay of several
seconds exists between the tests to minimize the
residual impacts of each test on the next test. The
processes performing a particular test terminate upon
completion of a test and new processes are fork(2)ed
at the beginning of the next test.

A distinction in terminology is made here between
concurrent and parallel. Parallel implies that “activities”

1 All processed are typically fork(2)ed in less than one
second.

that are said to be parallel start at the same time and
stop at the same time. Concurrent is a somewhat
looser constraint where activities overlap in time; that
is, activities are said to be concurrent if one starts
before another has completed or if one continues
whilst another has completed. Bertha processes
performing IOPS for throughput tests start at
approximately the same time but end at potentially
widely varying times, hence the looser term concurrent
is used rather than parallel.

Each process performs its I/O to an exclusively
accessed file referenced as a scratch file2. This file is
created during the write test and used in subsequent
tests. At the completion of a Bertha run, these scratch
files are deleted. The length of this file is provided as a
command line argument in units of megabytes. Each
process performs its particular test on the entire
scratch file before completing; that is, the length of the
Bertha run is the amount of time necessary to perform
the tests on a fixed amount of I/O that is user specified
at the time of execution.

In addition to supplying the number of processes and
scratch file size, the size of each IOP is also supplied
in units of bytes; the default is 16384 (16 Kbytes).
Each read and write operation will be of this length
from an application level, but the operating system
may combine application level IOPs together and
perform fewer but larger IOPs as an optimization. This
was particularly evident in testing on Solaris 9, where
the system activity reporter facility, sar(1), showed
throughput volumes equal to what Bertha reported at
an application level, but sar(1) showed a reduction in
number of IOPs performed by an order of magnitude
when using an I/O size of 16 Kbytes.

Using threads rather than fork(2)ed processes to
increase I/O concurrency for higher throughput levels
is an alternate implementation. However, one of the
design objectives was to make Bertha as portable as
possible, relying on “lowest common denominator”
interfaces, libraries, and mechanisms to increase the
likelihood of successful porting to a variety of
platforms3. Threading implementations can vary
dramatically between operating systems, such as
Redhat Enterprise Linux (RHEL) 3 and RHEL 4, but
the use of fork(2) to spawn processes should provide
more consistent behavior. In retrospect, the use of
threading, depending on the operating system
implementation of the threading model, may remove

2 The exception is replay mode with the --
replay_mono_file is used; in that case, all processes
are performing IOPs on the same file.
3 At the time of writing, Bertha runs on Linux (RHEL 3 and
RHEL 4), and Solaris 9.

the need to have shared memory segments (described
in the section below). The advantages of not having
shared memory segments are minimal, however, and
it is somewhat debatable as to whether other
advantages exist.

Replay Capability
In addition to the throughput tests that have a set of
processes that each perform sequential I/O, the replay
capability implemented in Bertha allows a set of
specific I/O transactions to be executed to observe
performance characteristics that may be expected by
an application on the particular configuration being
tested. These transactions can be captured from
actual applications running in a production
environment, constructed programmatically or
manually with an editor to implement a simulation, or a
combination of the two (described in more detail
below).

The I/O transactions are stored in an ASCII file
referenced as a “trace” file. The first line of the trace
file contains the length in bytes of the file being
accessed by the real or simulated application; all other
records contain the I/O transactions, one per line.
Each I/O transaction is composed of a starting
location, an operation (read or write specified by the
single characters ‘r’ or ‘w’, respectively), the length of
data in bytes to read or write, and the length of time in
seconds to wait after the transaction before performing
the next I/O transaction. The content of data being
written will not be what the application might see, but
rather the data will be a “dirtied” buffer of the size
specified for the particular transaction. The locations
addressed in the I/O transactions of the trace file are
all confined between the address of 0 and the file
length specified on the first line of the trace file.
Attempts to access beyond these bounds result in an
error and termination of a Bertha run.

The delay component of the replay I/O transactions is
analogous to “think time” used in interactive
applications. To determine maximum throughput,
delay values will be zero. The specification is in units
of seconds, but not confined to integer values. The
library call usleep(3) allows delay in the resolution to
be specified in units of microseconds4.

By default, each process run during a Bertha replay
test, specified on the command line with the --
num_procs command line argument, will perform the
set of transactions specified in the trace file on its own

4 The library function usleep(3) has been noted as
obsolete in its man page. Future versions of Bertha will need
to use nanosleep(2) or setitimer(2) instead of
usleep(3).

scratch file. Alternate semantics can be implemented
with the --replay_mono_file flag, where each of
the processes performs some approximately equal
number of transactions specified in the trace file on a
single file; that is, all processes are reading and writing
to the same file. If the number of transactions in the
trace file is not a multiple of the number of processes
performing I/O, the nth process performs its allocated
set of transactions from the trace file plus the
“remaining” transactions.

The size of the file described in the trace file may not
necessarily match the size of the scratch file as
specified on the command line invoking Bertha. It is
quite possible that the resources available in a test
environment might not be equal to what is available in
a production environment. Pursuing “what if” analyses
would also be a reason why the file sizes may not
match.

To address this situation, I/O addresses are
proportionally scaled to map transactions to address
the same relative locations in the files. That is, a
mapping function uses a scaling factor from the file
size specified in the trace file to the scratch file size.
By default, the target addresses for I/O operations are
scaled but the volume of data (the number of bytes
read or written) is not. Using the --
replay_scale_io_size command line flag causes
the number of bytes in an I/O operation to be scaled in
addition to the scaling of the target I/O address.

Actual production transactions can be captured in a
number of ways. One way is to instrument applications
to reveal I/O transactions. However, third party
applications do not typically provide such a luxury.
When such instrumentation is not available, it can be
obtained by vxtrace when Veritas Volume Manager is
being used. Further, truss(1) on Solaris or strace(1)
on Linux implementations can be used to show all
system calls being executed by a process, including
read(2), write(2), and lseek(2) along with their
arguments and return values. This data can be parsed
and reformatted to form the I/O transactions to be
placed into a trace file for replay. When using
truss(1) or strace(1) output, the parsing program
will need to trace the current location being addressed
within the file. The vxtrace utility provides this data.
Note that truss(1) and strace(1) show activity from
an application perspective; vxtrace shows activity
from an operating system perspective. Specifics on the
format of the trace file records are described in the
Bertha man page.

Metrics Reporting
Bonnie reports throughput rates (and CPU utilization)
observed during each of the tests it runs. The values

reported are averages for the duration of the test.
When testing using a single process, as Bonnie does,
this provides a quite acceptable characterization of I/O
performance from an application perspective.
However, when using multiple processes that may not
terminate at the same time, use of a single average is
of questionable validity.

To address this issue, all I/O transactions during
Bertha runs are stored to more precisely characterize
performance. Preserving the start time, response time,
and I/O size allows statistical summarizations such as
median, 90th percentile, standard deviation, maximum
value, and others are available in addition to averages.
Further, having this data means that a wealth of
different reports can be used to investigate I/O
subsystem behavior in more detail.

For example, the amount of data written over time
during a write test reveals a repeating pattern of bursts
of I/O followed by several seconds of delay. This is
likely explained by buffering occurring at the operating
system level and caching in the file system cache and
the storage controller cache, as well as cache on
DASD. Note that Bertha is a benchmark tool – it
reveals particular behavior, it does not provide
explanations as to why the behavior is there. In this
sense, Bertha is analogous to a microscope in
providing data.

In addition to activity over time, a set of histograms
that characterize response time, throughput, and I/O
concurrency level are available. The latter of these is
the number of I/O operations active at a given time.
The aggregation of data for the histograms is
controlled by command line arguments that specify the
time increments into which the data is gathered and
the “bucket” size used for the aggregation for the
particular measure (e.g. throughput and I/O
concurrency).

Data is also aggregated to provide a basis for
response time vs. throughput and response time vs.
I/O concurrency level curves. These are categorized
along with the histograms for ease of implementation.

Reports
Bertha currently provides reports in column-formatted
and labeled text (ASCII) files or in comma separated
value (CSV) files. There are plans to implement files
that can be read by gnuplot, R, and SAS. Some or all
of these additional report formats may be available by
the time of publishing.

Command line arguments are used to specify which
type(s) of reports are to be generated. Multiple report
types can be generated for each run. The Bertha man
page contains the specifics regarding what flags are
used to cause the various reports to be created. Recall

that reports will be created in the directory specified by
the --report_dir command line argument or default
to “./reports” relative to the current working
directory in use when Bertha is invoked.

“Re-reporting” Capability
Benchmarks conducted using Bertha may take a
considerable amount of time. Upon reviewing results, it
may be necessary to alter the histogram parameters to
aggregate the results differently to produce more
useful results summaries. Performing the benchmark
again to obtain these can be quite costly with respect
to time.

The “re-reporting” capability was added to Bertha to
address this issue. This capability allows the raw
results from a particular run to be stored in a data file
and read again for reporting using different histogram
parameters. When running to generate data, using the
--record command line flag will cause data files for
each test performed (write, read, rewrite, replay) to be
stored in the directory specified to contain the reports.
Using the --rereport command line flag will cause
Bertha to look for data files corresponding to the tests
performed and generate a new set of reports based on
the histogram parameters supplied. No I/O testing is
done when the --rereport command line flag has
been specified.

Coding Details
The Bertha benchmark tool is written in the C
programming language and is composed of
approximately 6,000 lines of code. Considerable effort
was made to produce high-quality, readable code.
Whether this goal was achieved is as yet to be judged.
It is anticipated that since this tool will be made
available as an open source software package, others
will peruse the code to identify oversights and
implement enhancements; a focus on ease of
readability and modification were therefore necessary.

The static source code checking tool splint was
used on all Bertha source code. It is typical for
splint to have numerous “false positives” with
regard to perceived errors in source code, and running
it on Bertha proved to be no exception. It is believed
that all genuine issues identified by splint have been
addressed.

A runtime tool named valgrind was used to verify
the operation of Bertha with regard to the use of
dynamically allocated memory. Bertha extensively
uses dynamically allocated memory to contain metrics
results and intermediate values when generating
reports. valgrind showed that no memory leaks
existed – all allocated memory was de-allocated prior
to program termination.

Each C function within Bertha performs at least
rudimentary pre-condition checks to ensure that
function arguments are within expected range. While
this may seem redundant, the expectation is that
Bertha will be examined and modified by other open
source contributors; the use of pre-condition checks
will greatly aid in error detection efforts as new and
modified code are introduced. In addition to pre-
condition checks, rudimentary post-condition checks
are used where appropriate.

The use of the assert(3) function is perhaps out of
vogue, but it is relied upon extensively in Bertha. As
with the apparently redundant pre-condition checks,
the assert(3) invocations are left in the anticipation
that the code will be modified and these invocations
will greatly aid in problem identification.

Extensive use is also made of the standard global
variable errno in Bertha code. It was once said in jest
that Ken Thompson, one of the original authors of the
first UNIX implementation, designed a car. As was the
perceived case with UNIX, Thompson’s fictitious car
had no gauges, no dials, and no indicators – save for
one large red light that resided in the center of the
dashboard. “When it goes off,” Thompson was to have
said, “the user will know what the problem is.” The
errno variable is in a sense this red light, but
considerably more useful.

The value of errno is zero when no error has
occurred; once an issue with a system or library call
has occurred, errno will contain some non-zero value
that is specific to the system or library call invoked.
Numerous uses of

assert(!errno)

are embedded where appropriate throughout the
Bertha source code. These aided greatly in
accelerating the development of Bertha. After the first
version of Bertha was completed, the decision was
made to leave these particular assert(3) invocations
in the code. As with pre-conditions and other
assert(3) invocations, it is expected that they will be
instrumental in identifying issues as code is added or
modified in Bertha by other open source contributors.
The typical Bertha user who is not utilizing its source
code should be oblivious to the existence of these
invocations.

Some of the criticisms of assert have been focused on
the additional execution time and larger program size.
The sections of code that issue I/O instructions within
loops are particularly time-sensitive; unnecessary code
may degrade the quality of results, particularly when
measuring maximum throughput. These particular
sections of code are compact and have as little code in

them as possible to minimize the impact of the
benchmark tool on the results.

Criticisms of Bertha
Few software packages pass without criticism.
Included here are some of the current and likely
criticisms of Bertha and relevant commentary. The
current version of Bertha that is open source is version
1.0, but Bertha has been evolving over the last seven
years. Further evolution will be guided by feedback
from actual users and changes in available operating
systems and storage technologies.

The most prominent criticism of Bertha from current
users is that Bertha tests run for a substantial period of
time. This must be the case because contemporary
components used for testing, both host systems and
storage subsystems, have large file system and I/O
caches. To realize what will happen during production-
level potential stress, the effects of caches must be
negated by moving enough data to fill the caches
several times.

It is particularly noteworthy that during Bertha tests,
even when running as a non-privileged user, host
systems have been put into a “hung” state and file
systems containing the scratch files were rendered
corrupt. This has not happened when testing “vanilla”
(standard) operating system and file system
configurations using UFS or VXFS. This has happened
with alarming consistency when testing clustering
software and global file system implementations,
however. The length of time observed to be necessary
to “hang” a host varies from one minute to
approximately 40 minutes, depending on the specific
software being tested.

The speculation based on observation and interaction
with vendors is that in most cases, I/O queues handled
in kernel structures are not being properly managed
and non-I/O related data structures may be
inadvertently overwritten. This is, however, speculation
at this point as vendors have not been forthcoming
with the specifics regarding why this behavior occurs,
but have given guarded and vague responses. While
not every global file system implementation has been
tested, every one that has been tested with Bertha has
suffered catastrophic failure. Bertha performance tests
become functionality tests; this is actually a “blessing
in disguise” and has reliably demonstrated flaws in the
author’s computing environment that were being
exhibited on an intermittent basis at best. This aided in
diagnoses and corrective actions, thus definitively
resolving production environment problems.

A second criticism of Bertha will be related to the
numerous report files that may be generated. These

can be combined or used selectively. Input from users
as to how to address this is invited.

Questions regarding the validity of Bertha tests with
regard to reflecting actual production workloads often
emerge. The answer is, as is often the case, “it
depends.” With regard to measuring maximum
throughput of an I/O configuration, Bertha testing is
likely to be exceptionally valid. Stress testing with
throughput tests may well simulate backup or data
loading operations that, while they may not be
representative at present, data growth will likely make
them valid in the future. The upper-bound of
performance and assurance of functionality under
sustained, heavy load (a.k.a. an endurance test), are
needed when businesses are risking revenue on
system performance and stability.

Further, the argument can be made that Bertha replay
tests, which perform the I/O access pattern and data
volumes for real or simulated applications, are
extremely valid. The --replay_scale_io_size and
--replay_mono_file options allow a variety of
behaviors to be replicated to address needs. Other
variant needs may emerge and be reported by users.

Examples
A simple example of a throughput test is shown below.
This test was run on a development workstation with
internal SCSI drives.

The command used to perform the test is shown
below. The man page for bertha contains details on
the options provided.

This particular test “sprayed” I/O at two distinct
directories. This is dictated by the occurrence of
multiple --scratch_dir arguments being supplied.
This is useful where the directories would be mounted
on distinct storage so that the goal of a particular test
would not necessarily be to determine the maximum
throughput of a particular LUN, but of an I/O channel
or some other potentially constrained component.

Also noteworthy is that 10 concurrent processes are
being used to generate I/O, as indicated by the --
num_procs arguments. Each of these processes
writes to its own scratch file of 100 Mbytes.
 ./bertha \
 --scratch_dir /fs/scratch_0 \
 --scratch_dir /fs/scratch_1 \
 --report_dir ./reports_test_2b \
 --num_procs 10 \
 --scratch_file_size 100 \
 --verbose --verbose --verbose\
 --logfile bertha_test_2b.log \
 --metrics_by_proc \
 --response_time_hist=[1.0,,1] \
 --xput_hist=[0.1,5.0,1] \
 --concurrency_hist=[0.1,1.0,1] \
 --rsp_vs_xput=[1.0,0.5,1] \

 --rsp_vs_concurrency=[1.0,0.25,1] \
 --time_line=[0.1,,1] \
 --test_name test_2 \
 --sas_reports \
 --record \
 2>&1

Bertha command used to perform throughput test

Rather than a single number showing average
performance, a set of descriptive statistics is provided
that summarizes all 64,000 write operations performed
for this test. Note that the reported average is
dramatically influenced by the maximum observed
response time. This high value was likely generated
when some component was saturated. The reported
times are in units of milliseconds.
 Write Response Time

 Test Run: Sat Mar 25 23:52:58 2006

 Response Time (msec) Metrics Summary for Test Run

Min: 0.135183
Median: 0.299931
Avg: 3.324013
75 %tile: 0.384092
90 %tile: 0.516891
95 %tile: 0.599861
99 %tile: 0.996113
Max: 2860.401855
Num Vals: 64000
Stddev: 15162.135742

Summary statistics for response time

One of the types of reports generated is the data
necessary to produce a histogram. Below is the output
generated for a histogram of throughput during the
write component of test.
 Histogram Table
 Write - Aggregate Throughput (MB/sec)

 Test Run: Sat Mar 25 23:52:58 2006

Intvl Range Freq
 From - Up To

 3 15.000000 - 20.000000 1
 5 25.000000 - 30.000000 2
 6 30.000000 - 35.000000 1
 7 35.000000 - 40.000000 3
 8 40.000000 - 45.000000 16
 9 45.000000 - 50.000000 2

Total number of samples: 25

Description: This histogram shows the number of
time intervals that were categorized into buckets
of size 5.000000 MB/sec. The frequency represents
the number of sample intervals where the aggregate
system I/O was in the range given by the bucket
size.

Note that the bucket sizes of the sample times and
throughput are specified on the command line. The --
put_hist parameter is the specific parameter set
that affects this particular report. Note that the --
time_line parameters were used for the graphs and
have a different granularity for time than the
parameters used for the throughput histograms. The
ability to re-aggregate the data differently for
subsequent reports produced during the same run
provides considerable flexibility.

Below are the corresponding graphs for the write
component of the test. Figure 1 shows throughput as
observed every 0.1 seconds, as specified by the --
time_line parameters. Figure 2 shows the I/O
concurrency – the number of I/O operations active at
any one time, also as observed every 0.1 seconds.
Recall that 10 concurrent processes were being used
to generate I/O.

The two graphs below were produced by SAS. By
using the --sas_reports option, Bertha emitted the
SAS code to load the data points into a SAS dataset
and generate graphs. The user need only run Bertha,
load the SAS code produced and run it to visualize the
data. The user can then iteratively refine the histogram
parameters and re-run Bertha with the --rereports
option to refine the data presentation without having to
generate I/O. This ability provides users with
considerable flexibility in presenting results.

Figure 1: SAS graph of throughput during write test

Histograms are also generated. The write throughput
histogram, again produced by SAS running bertha-
generated code is shown below in Figure 3.

Bertha can also generate scripts and data files for the
generation of charts with gnuplot and R as well as
SAS. These files are generated by supplying the
command line options --gnuplot_reports and --
R_reports, respectively. The scripts and data files

will be located in the reports directory specified by the
--reports_dir option or the default ./reports
subdirectory. Throughput results obtained during a
non-trivial throughput test are shown in the gnuplot
graph in Figure 4.

Figure 2: SAS graph of I/O concurrency during write test

Figure 3: SAS chart showing write throughput histogram

Figure 4: gnuplot graph of throughput during write test

Summary
Bertha is an extension of Bonnie, a benchmarking tool
that has been in use for over a decade. It offers new
features to challenge contemporary storage
subsystems and provide greater insight to characterize
I/O performance, as well as provide more capabilities
as a benchmarking tool. It will be interesting to see if
users will employ Bertha, and if so, what flaws are
noted and enhancements recommended.

	Throughput Testing
	Metrics Reporting

	Reports
	Bertha currently provides reports in column-formatted and labeled text (ASCII) files or in comma separated value (CSV) files. There are plans to implement files that can be read by gnuplot, R, and SAS. Some or all of these additional report formats may be available by the time of publishing.
	“Re-reporting” Capability
	Benchmarks conducted using Bertha may take a considerable amount of time. Upon reviewing results, it may be necessary to alter the histogram parameters to aggregate the results differently to produce more useful results summaries. Performing the benchmark again to obtain these can be quite costly with respect to time.
	The “re-reporting” capability was added to Bertha to address this issue. This capability allows the raw results from a particular run to be stored in a data file and read again for reporting using different histogram parameters. When running to generate data, using the --record command line flag will cause data files for each test performed (write, read, rewrite, replay) to be stored in the directory specified to contain the reports. Using the --rereport command line flag will cause Bertha to look for data files corresponding to the tests performed and generate a new set of reports based on the histogram parameters supplied. No I/O testing is done when the --rereport command line flag has been specified.
	Coding Details
	Criticisms of Bertha
	Examples
	Bertha command used to perform throughput test
	Summary statistics for response time

	Figure 2: SAS graph of I/O concurrency during write test
	Figure 3: SAS chart showing write throughput histogram
	
	Figure 4: gnuplot graph of throughput during write test

	Summary

